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Abstract
The blood�brain barrier (BBB) forms a protective barrier around the brain, with the important function of maintaining brain
homeostasis. Pathways thought to initiate BBB dysfunction include the kinin system, excitotoxicity, neutrophil recruitment,
mitochondrial alterations and macrophage/microglial activation, all of which converge on the same point*reactive oxygen
species (ROS). Interestingly, ROS also provide a common trigger for many downstream pathways that directly mediate BBB
compromise such as oxidative damage, tight junction (TJ) modification and matrix metalloproteinases (MMP) activation.
These observations suggest that ROS are key mediators of BBB breakdown and implicate antioxidants as potential
neuroprotectants in conditions like stroke and traumatic brain injury (TBI). This review explores some of the pathways both
upstream and downstream of ROS that have been implicated in increased BBB permeability and discusses the role of ROS
and antioxidants in neuropathology.
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Introduction

The blood�brain barrier (BBB) is a protective mem-

branous barrier that restricts the entry of molecules

and white blood cells from the systemic circulation

into the central nervous system (CNS). It thus

functions to maintain the homeostatic balance of

the brain extracellular fluid, thereby ensuring normal

brain function.

The BBB consists of the capillary basement mem-

branes, brain microvascular endothelial cells

(BMVECs), astrocytic endfeet and pericytes. The

astrocytic endfeet function in brain water home-

ostasis, which together with the pericytes, have been

implicated in BBB development and permeability,

although their precise role in the BBB remains in

dispute [1,2]. The major component of the BBB is

the BMVECs. Unlike endothelial cells in the periph-

eral circulation, BMVECs lack fenestrations, thus

preventing the passage of molecules across the BBB

through these gaps. In addition, BMVECs have lower

pinocytic activity than other endothelial cells [3], thus

minimizing transcellular transport of substances

across the BBB. Tight junctions (TJs) and adherens

junctions further contribute to the barrier property by

limiting paracellular diffusion. While the latter con-

sists of cadherin and catenin, the former contains

occludin and claudins. These are transmembrane

proteins whose expressions are closely associated

with BBB permeability. For instance, increased

occludin expression decreases paracellular transport

and thus reduces permeability across the BBB [4],

while claudin-5 prevents the passage of large mole-

cules [5]. Occludin and claudins are linked to the

actin cytoskeleton via cytoplasmic proteins from the

zonulae occludens (ZO) family. Together with signal-

ling molecules such as Rho, PI3K and calcium ions

(Ca2�), these components regulate TJ integrity and

BBB permeability.

BBB integrity is compromised when the flux of

molecules through either the paracellular or the

transcellular pathway is increased. This could happen

if pinocytic activity increases or if TJs open. BBB

breakdown has been reported in various neurological

conditions such as traumatic brain injury (TBI),

multiple sclerosis (MS), stroke and stress [6�9].

Interestingly, a common feature in all these condi-

tions is oxidative stress, a situation in which the

oxidant�antioxidant balance is disturbed, resulting in

excess oxidants. Reactive oxygen species (ROS) levels

are known to increase in such pathology and it has

been postulated that these ROS contribute to in-

creased BBB permeability. In fact, experiments in

frogs have shown a correlation between increased

ROS levels and decreased electrical resistance across

the brain endothelium, indicating an increase in BBB

permeability [10]. In addition, disturbances in anti-

oxidant levels and oxidative damage have been

associated with BBB dysfunction. For instance,

depletion of cerebral glutathione (GSH) in rat brains

led to increased BBB permeability, while restoration

of normal GSH levels returned permeability back to

normal [11]. Because GSH is an important physio-

logical antioxidant, such observations further support

the idea that oxidative stress is a crucial determinant

of BBB permeability. Several issues pertaining to this

hypothesis are discussed in this review.

How do ROS influence BBB integrity?

The initial insult in neuropathologies may vary from

ischemia in stroke to environmental toxins in Parkin-

son’s disease. Regardless of the initial insult, the

commonality in these conditions is increased ROS

production. Several pathways may link the initial

insult to the rise in ROS production, some of which

are discussed below.

How do such damaging ROS levels arise?

Bradykinin system. Bradykinin is formed from kino-

gen in a process catalysed by kallikrein. It is one of the

first agents released upon inflammation and injury

and has been found to increase in plasma and brain

tissue following cerebral ischemia/reperfusion [12].

This, coupled with observations that kinin antago-

nists can reduce oedema following strokes in animals

[13] while kinin receptor agonists can increase BBB

permeability [14], indicates the involvement of bra-

dykinin in BBB breakdown. There are several

mechanisms by which bradykinin, upon binding to

B2-receptors in the CNS, can increase BBB perme-

ability.

For one, bradykinin can activate phospholipase A2

(PLA2), which then cleaves membrane phospholipids

to release arachidonic acid (AA) [15]. It has been

postulated that ROS produced during AA metabo-

lism directly modulates BBB integrity. For instance,

inhibition of 5-lipoxygenase (which converts AA to

leukotrienes) reduced AA-induced oedema [16]. It

has also been shown that bradykinin-induced BBB

permeability occurs via ROS produced during cy-

clooxygenase (COX) metabolism of AA [17] and that

COX inhibition prevented BBB breakdown [18].

COX inhibition in conjunction with inducible nitric

oxide synthase (iNOS) inhibition also improved

cerebral tissue perfusion in rats following TBI [19].

It thus appears that inhibition of AA metabolism and,

in so doing, decrease in ROS production, protects

BBB integrity and improves post-injury prognosis.

However, it is also possible that it is the metabolites of

AA, namely leukotrienes and prostaglandins, rather

than the ROS by-products, which increase BBB

permeability, a possibility discussed previously

[20,21]. Nonetheless, the possible involvement of
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ROS cannot be dismissed, especially when it appears

to be a converging point across various mechanisms

of BBB breakdown, as will be discussed below and as

depicted in Figure 1. Besides, AA may also facilitate

NADPH oxidase activity, thus increasing ROS pro-

duction further [22].

Apart from increasing AA production from mem-

brane phospholipids, bradykinin can also induce BBB

opening by increasing Ca2� levels within endothelial

cells. In fact, an increase in intracellular Ca2� levels

has been correlated with a decrease in transendothe-

lial electrical resistance (TEER), while antagonizing

the key bradykinin receptor B2 prevented this Ca2�

spike and drop in TEER [16]. Interestingly, gluta-

mate-receptor antagonists also prevented this brady-

kinin-related rise in Ca2� levels [23], suggesting a

link between excitotoxicity (commonly associated

with glutamate) and bradykinin-induced BBB break-

down.

There are several ways by which Ca2� elevation

can stimulate ROS production. For example, Ca2�,

via the Ca2�-calmodulin complex, can activate nitric

oxide synthase (NOS) [24]. NOS appears particularly

important to bradykinin-induced BBB opening as

cells expressing low levels of NOS were resistant to

the effects of bradykinin, a sharp contrast against

those which had high levels of NOS expression [25].

The exact NOS isoform involved remains a subject of

debate which we discuss later in this review. NOS

activation leads to increased nitric oxide (NO)

production [24]. NO and the NO-derived peroxyni-

trite (ONOO�) may then increase BBB permeability

by affecting TJ proteins [26]. NO could also induce

BBB breakdown by activating the cGMP-PKG cas-

cade. This cascade has been shown to decrease BBB

resistance in vivo and in intact perfused microvessels

[27,28]. Thus, NO could elevate BBB permeability

by modification of TJ proteins or via the cGMP-PKG

pathway.

The second pathway which Ca2� can activate is the

PLC�DAG�PKCpathway.Ca2� activatesPLC,which

cleavesPIP3toproduceIP3andDAG[29].DAGinturn

activates PKC which causes BBB disruption either by

modulating the actin cytoskeleton or by increasing NO

productionviaNOS[30].Alternatively,PKCactivation

could also lead to the up-regulation and activation of

NADPHoxidase, leading to increasedROSproduction

[31,32].

Thirdly, Ca2� can activate PLA2, stimulating AA

production [33]. AA, as earlier described, can in turn

cause an increase in ROS production.

In summary, bradykinin can cause BBB breakdown

either by increasing AA production or by increasing

intracellular Ca2� levels, both of which ultimately

lead to elevated ROS generation. Because various

compounds including apocynin (an NADPH oxidase

inhibitor) [34], indomethacin (a non-selective COX

inhibitor) and N-acetylcysteine (an antioxidant) [35]

are known to inhibit different pathways associated

with bradykinin and to ameliorate BBB dysfunction,

it appears that the extent and severity of bradykinin-

induced BBB opening may be determined by the

cross-talk between the various pathways described

above.

Excitotoxicity. Excitotoxicity is a situation in which

there is an overload of excitatory amino acids like

glutamate or excitotoxins, resulting in pathology via

ways such as increased ROS production and elevated

AA generation.

Glutamate is a central molecule in several neuro-

logical conditions [36�38]. For instance, in TBI,

Figure 1. Pathways by which an initial insult can increase ROS generation and by which ROS can cause BBB breakdown.
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glutamate release is among the first events to occur

post-injury [6]. Binding of excess glutamate and/or

excitotoxins to NMDA/AMPA receptors causes in-

creased Ca2� entry via these receptors. Influx of

sodium ions (Na�) via the AMPA receptors also

stimulates Ca2� entry by reversing the Na�/Ca2�

transporters. Binding of glutamate or excitotoxins to

metabotropic glutamate receptors further increases

intracellular Ca2� levels by stimulating the release of

intracellular Ca2� stores from the endoplasmic

reticulum. It is interesting to note that, although the

pathway by which glutamate causes BBB disruption

resembles that by which it causes neuronal death, the

two processes actually occur independent of each

other [39]. Thus, it appears that neuronal death is not

a causative factor in BBB dysfunction.

Apart from inducing oxidative stress, excitotoxicity

could also aggravate BBB disruption by destroying

astrocyte function, thus preventing repair of the BBB

[39]. BBB permeability could also be increased due

to an elevation of pinocytic rate across endothelial

cells following excitotoxicity [40].

Neutrophil recruitment. Upon injury, neutrophils are

recruited to the BBB as part of the inflammatory

response [41]. Neutrophils have been implicated in

ischemic injury, with reports showing that hypoxia

increases neutrophil ‘lifespan’ [42] and that an

increase in superoxide generation by neutrophils

occurs during ischemia [43]. In fact, BBB dysfunc-

tion has been shown to result from neutrophil

recruitment [44]. Thus, neutrophils play an impor-

tant role in BBB disruption.

Activated neutrophils are a major source of ROS

during inflammation, with enzymes like NADPH

oxidase catalysing the production of ROS [45].

Neutrophils express B2-receptors for bradykinin

[46], and bradykinin, as earlier discussed, can lead

to AA generation and PKC activation. Both these

events have been shown to activate NADPH oxidase

[47,48]. Therefore, it seems plausible that ROS

production by neutrophils in neuropathology may

be bradykinin-dependent. It has to be stressed how-

ever that this hypothesis has yet to be verified

experimentally to our best knowledge. The ROS

thus produced could then adversely affect BBB

integrity via TJ proteins modification [49] or via the

expression of inflammatory mediators, as will be

discussed later.

Mitochondria. Mitochondria are the major sources of

ROS production in most mammalian cells [50]. Such

production increases in many pathological conditions

and is associated with mitochondrial dysfunction

[51�53]. Interestingly, although mitochondrial ROS

production is largely attributed to complexes I and III

[54], not much work has been done on these

complexes in relation to BBB dysfunction to our

best knowledge. Instead, of the electron transport

chain complexes, complex II has assumed a more

prominent role in this context as described below.

The mitochondrial toxin, 3-nitropropionic acid

(3-NP), is commonly used to produce a model of

Huntington’s Disease in animals [55]. 3-NP ad-

versely affects mitochondrial integrity and function

in several ways. For instance, it has long been known

to irreversibly inhibit complex II [56]. More recently,

3-NP was observed to cause significant complex I

dysfunction in vivo [57]. Such findings suggest that

3-NP may increase ROS production in the mitochon-

dria. After all, inhibition of both complexes I and II

are known to lead to enhanced/increased superoxide

generation [54,58,59]. The mitochondrial toxin also

increases markers of oxidative damage and matrix

metalloproteinase (MMP)-9 expression in injured

striatum, concurrent to inducing BBB opening, with

the severity of 3-NP-induced striatal damage being

correlated to SOD expression [60]. Taken together,

these findings suggest that 3-NP, by disrupting the

mitochondrial electron transport chain, causes an

elevation of ROS generation, thereby triggering

events such as MMP-9 induction that eventually

lead to BBB opening.

Macrophage infiltration and activation. Macrophage

accumulation is commonly observed in the brain

following injury [61,62]. It remains unclear if these

macrophages originated from resident microglia al-

ready in the brain or if they were differentiated from

blood-derived monocytes that had migrated across

the BBB. Two groups have separately observed that,

in the absence of blood-derived monocytes, brain

microglia is able to differentiate into macrophages,

with one group further observing that these macro-

phages can go on to activate the complement path-

way, consequently causing BBB breakdown [63,64].

This suggests that macrophages that accumulate in

the injured brain are derived from brain microglia.

However, because it is difficult to distinguish between

macrophages of the two possible origins, the con-

tribution of blood-derived monocytes cannot be ruled

out [61].

Regardless of their origin, macrophage/microglial

activation seems to be an early event in injury [65]

that precedes BBB breakdown [66], with inhibition of

their activation preventing BBB dysfunction [67]. It

appears though that macrophage accumulation oc-

curs at a later time post-injury than neutrophil

recruitment, suggesting that neutrophils may play a

more important role in the acute phase [61]. How-

ever, we feel that the time course of leukocyte

recruitment and activation may vary depending on

the nature of the injury, especially since significant

macrophage accumulation/activation is known to

occur in the acute phase of ischemia, but only sets

in 72 h post-TBI [68].

Involvement of ROS in BBB dysfunction 351
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Although a major source of ROS generation, the

influence of macrophage/microglial activation on the

brain has already been extensively reviewed elsewhere

[65,69] and shall not be covered in detail here.

Suffice to say, activated macrophages/microglia pro-

duce ROS via NADPH oxidase [70�72]. Such ROS

are not only cytotoxic [73] but can also activate redox

signalling pathways such as the JAK-STAT pathways,

thereby triggering an inflammatory response [74].

For instance, activated macrophages/microglia ex-

press C1q [64,75], which induces the expression of

pro-inflammatory mediators such as TNFa and Egr-

1, all of which can contribute to BBB disruption [66].

Activated macrophages/microglia may also express

iNOS, thereby generating significant and possibly

damaging levels of NO [76,77].

The pathways involved in BBB dysfunction up-

stream of ROS are summarized in Figure 1. It should

be noted that the pathways described here and below

are by no means exhaustive. Other pathways such as

the cAMP-PKA pathway may also be involved in

BBB breakdown [78]. These are, however, not

discussed here as their role in ROS-induced BBB

dysfunction remains unclear.

How does oxidative stress affect the BBB?

Oxidative damage to cellular molecules. An increase in

oxidative stress can lead to elevated oxidative damage

to biomolecules such as proteins and lipids. For

instance, GSH depletion increases the susceptibility

of protein sulphydryls to oxidative insult and has in

fact been shown to cause membrane protein damage

at the BBB and consequently increased BBB perme-

ability [79]. In another example, decrease of Na�/

K�-ATPase activity was closely correlated to the

induction of oxidative stress, suggesting that elevated

ROS levels cause damage to the ATPase, thereby

leading to BBB dysfunction by allowing excessive and

inappropriate influx of Ca2� into cells [80].

Membrane lipids form another important constitu-

ent of the BBB, providing a large surface area across

which lipid-soluble molecules can diffuse via the

transcellular pathway. Membrane lipids could

be oxidized to give cytotoxic lipid peroxidation pro-

ducts like malondialdehyde and 4-hydroxynonenal

(4-HNE) which may adversely affect BBB integrity.

For instance, the addition of exogenous 4-HNE

increased the permeability of an in vitro BBB model

[81]. Conversely, treatment of cells with inhibitors of

lipid peroxidation products protected against BBB

damage [82,83]. It thus appears that lipid peroxidation

increases BBB permeability, probably by modulating

the transcellular passage of substances.

ROS can also influence BBB integrity via its effects

on DNA. For instance, elevated ROS levels causes

hypermethylation of the promoter region of E-cad-

herin, resulting in E-cadherin down-regulation [84],

corroborating with observations that endothelial cell

expression of E-cadherin is decreased following

hypoxia [85]. E-cadherin is important to BBB func-

tion [86]. Therefore, although a direct relationship

between ROS-induced E-cadherin down-regulation

and BBB leakiness has not been demonstrated, it is

plausible that down-regulation of E-cadherin, pre-

sumably as a result of elevated ROS levels, causes

BBB breakdown.

Changes in TJ proteins. As mentioned earlier, occlu-

din, claudin and ZO proteins are components of TJs

which regulate the paracellular pathway, thereby

governing the passage of water-soluble molecules

and ions across the BBB [87]. Any alterations in

these proteins therefore will be expected to influence

BBB permeability. Indeed, it has been found that

exposure to a ONOO� donor induced a decrease in

claudin-5 content [26]. Claudin-5 is a transmem-

brane protein that prevents molecules greater than

800 Da from passing through the BBB [5]. Thus, a

decrease in claudin-5 content will be expected to

increase BBB permeability to molecules larger than

800 Da.

Similarly, exposure of murine BMVECs to hypoxia

followed by reoxygenation [88] and rat BMVECs to

xanthine/xanthine oxidase [89] reduced occludin

expression. Interestingly, another study using bovine

BMVECs exposed to hydrogen peroxide (H2O2)

found an increase in occludin content instead [90].

However, despite this rise in occludin expression,

most occludin was dispersed throughout the cell

membranes rather than being concentrated at the

TJs. Hence, despite the disparate effects of ROS

exposure on occludin expression per se, the outcome

is consistent*there is increased BBB permeability

and BBB dysfunction. The reason for the differences

in effects on occludin expression is unclear, although

it may be due to differences in the nature of ROS

involved and the type of cells used.

Claudin and occludin aside, ROS could also alter

BBB permeability by influencing ZO protein distri-

bution. For instance, exposure to H2O2 led to a

redistribution of ZO-1 from the TJs to the cytosol,

resulting in a decrease in TEER and an increase in

BBB permeability [90].

In addition to affecting the expression and dis-

tribution of TJ proteins, oxidative stress could also

compromise barrier function by influencing the

phosphorylation of these proteins. Alcohol-induced

oxidative stress was found to increase serine phos-

phorylation on claudin-5 and occludin and serine/

threonine phosphorylation on ZO-1 [26]. A switch in

phosphorylation from serine to threonine residues on

claudin-5 is associated with increased BBB resistance

[91]. It is thus plausible that the reverse, that is an

increase in serine phosphorylation, would decrease

BBB resistance. A shift in phosphorylated residues on
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occludin and ZO-1 could also influence TJ protein

localization [26,92], thus playing a role in BBB

breakdown.

In short, the expression, distribution and phos-

phorylation of TJ proteins are of utmost importance

to BBB permeability. A change in any of these

parameters induced by ROS could thus compromise

BBB integrity. The signalling molecules involved in

evoking such changes are uncertain, although candi-

dates include the MAP kinase ERK [88], PI3K [89]

and RhoGEFs [34].

Cytoskeletal reorganization. Elevated ROS levels may

also alter BBB integrity by causing cytoskeletal

changes. For instance, superoxide induces F-actin

stress fibre formation in BMVECs within 30 min of

exposure, possibly via a Rho-dependent pathway

[89,93]. Upon activation, Rho phosphorylates var-

ious proteins such as FAK [94], ROCK and mDIA

[95]. Activation of ROCK then leads to increased

myosin light chain (MLC) phosphorylation both

directly and indirectly via inhibition of MLC phos-

phatases [95]. Oxidative stress also leads to increased

expression of chemokine receptors [96]. Increased

signalling flux through these receptors further con-

tributes to MLC phosphorylation via the activation of

myosin light chain kinase (MLCK) [96], thereby

modulating actin structure. MLCK can also phos-

phorylate TJ proteins, further disturbing the cytoske-

letal organization. For instance, exposure to peroxide,

ONOO� and NO increases serine phosphorylation

on occludin [26], leading to changes in actin-cytos-

keleton interactions [92] and hence increasing BBB

permeability [97].

MMP activation. MMPs are zinc-containing proteo-

lytic enzymes that degrade components of the extra-

cellular matrix and of basement membranes. MMP

inhibition prevents BBB opening [60], possibly by

reducing occludin loss and preventing endothelial gap

formation [98]. Therefore, it appears that MMP

activity is a crucial determinant in BBB permeability.

The precise molecular mechanism by which MMPs

are activated is unclear. However it has been found

that protein tyrosine kinase (PTK) inhibitors can

prevent MMP activation [99], thus implying a role for

PTKs. In addition, SOD2-knockout mice, which

have decreased antioxidant capacities, are known to

suffer greater BBB dysfunction involving MMP

activity [100] while SOD1 over-expression reduces

MMP-9 activation [101]. Both these pieces of

evidence support the idea that the initial trigger for

MMP activation involves ROS. Therefore it appears

that, under conditions of oxidative stress, PTKs are

activated [102]. PTKs in turn may lead to MMPs

activation. Once activated, MMPs degrade the en-

dothelium basement membrane, leading to increased

BBB permeability [103].

Inflammatory mediators. The transcription factor NF-

kB is activated in a redox-dependent manner. Upon

activation by ROS, NF-kB can stimulate the expres-

sion of the adhesion molecules ICAM-1 and VCAM-1

[104]. ICAM-1 cross-linking can then activate Ca2�-

signalling pathways, leading to cytoskeletal alterations

in BMVECs [105], thus causing BBB compromise.

Adhesion molecules could also contribute to BBB

opening by mediating leukocyte-vascular adhesion,

inhibition of which prevents BBB dysfunction [106].

For instance, the induction of ICAM-1 and VCAM-1

on endothelial cells promotes the recruitment of

activated neutrophils and leukocytes. Similar to

ROS-induced cytoskeletal disorganization, such re-

cruitment appears to be Rho-dependent [107]. The

recruited cells then release inflammatory mediators

like TNFa and IL-1b, leading eventually to BBB

breakdown [44,108,109]. Furthermore, as these cells

move across the BBB, they may also induce changes in

the BBB structure. The movement of monocytes

across the BBB, for example, causes loss of occludin

at the TJs, thus increasing BBB permeability [98].

Recruited leukocytes such as neutrophils and macro-

phages may also exacerbate injury to the BBB by

producing even more ROS. Besides ICAM-1 and

VCAM-1, alpha integrins such as CD11b have also

been implicated in leukocyte recruitment [110] and

the expressions of these are also thought to be redox-

dependent [111,112]. Likewise, other adhesion mo-

lecules such as PECAM-1 [113], E-selectin [114] and

P-selectin [115] have also been reported to be redox-

regulated. However, their influence on BBB perme-

ability is either poorly characterized and largely

hypothetical [116] or highly variable depending on

the stimuli used [117]. Conversely, adhesion mole-

cules such as ALCAM have been implicated in BBB

dysfunction [118], but are not known to be influenced

by ROS, and these are not discussed here.

Another commonly implicated inflammatory med-

iator is VEGF. It has been shown that exposure of

osteoblasts and of human retinal epithelial cells to

ROS causes an increase in VEGF expression

[119,120]. It is plausible that the same happens in

BMVECs, leading to BBB dysfunction. After all,

VEGF has been shown to alter the distribution,

expression and phosphorylation of TJ proteins like

ZO-1 and occludin [121,122] and to increase the

permeability of cultured BMVECs [123]. Therefore,

it is likely that ROS induce VEGF expression in

BMVECs, triggering a cascade of events that even-

tually leads to BBB breakdown.

The pathways involved in BBB dysfunction down-

stream of ROS are summarized in Figure 1.

Is ROS-induced BBB damage reversible?

Few works have been published that specifically

evaluated the reversibility of the effects which ROS
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have on the BBB. In one paper, it was reported that

the increase in permeability to sucrose of rat brain

endothelial cell monolayers induced by menadione

(a redox-cycling agent) was reversed upon removal of

menadione from the culture medium [124]. Another

group found that the decrease in BBB resistance

following trauma was in part due to a ‘transient

expression of transendothelial vesicular transport

system’ [125], suggesting a lack of permanence of

effect. Subsequently, a third group observed that in

rats expressing a vector carrying IL-1b cDNA, there

was an initial increase in BBB permeability, but this

was reversed by day 30 post-injection [44]. All these

findings suggest that ROS-induced BBB breakdown

is reversible.

This is not totally unexpected, as many of the

processes by which ROS are thought to cause BBB

dysfunction are themselves reversible. For instance,

MMPs may be activated by ROS via an increase in

flux in the PTK pathway. This could occur either by

activation of PTK and/or by inhibition of protein

tyrosine phosphatases (PTPs), both of which are

reversible processes [126]. Similarly, H2O2-induced

cytoskeletal alterations in endothelial cell cultures can

be reversed upon H2O2 removal by catalase [127].

Thus it is unlikely that ROS will cause a permanent

dysfunction of the BBB, something that is generally

supported by scientific literature. However, in

chronic conditions where elevated ROS production

is sustained, it is possible that the resulting damage is

permanent. More work remains to be done to

confirm this.

Which ROS are principally involved in BBB damage?

Despite the apparent importance of ROS in regulat-

ing BBB integrity, it remains unclear which species of

ROS is principally involved. Several pieces of evi-

dence point to a key role for superoxide:

(a) Inhibition of NADPH oxidase protects against

BBB dysfunction [34] and NADPH oxidase

produces superoxide.

(b) SOD catalyses the dismutation of superoxide and

SOD over-expression attenuates BBB dysfunc-

tion [101], whereas SOD knockout aggravates

BBB damage [100].

(c) Superoxide generated by the xanthine/hypox-

anthine system induces stress fibre formation

and cytoskeletal changes in rat brain endothelial

cells and modulates changes in the BBB [93].

(d) Superoxide was definitively identified in a cat

model of ischemic-reperfusion injury in which its

generation was detected in the endothelium and

vascular smooth muscle [128]. Treatment of the

same model with SOD alone reduced the in-

crease in BBB permeability [129].

Although the above results suggest that superoxide

is the ultimate trigger in BBB dysfunction, they do

not address the question of whether BBB damage is

directly mediated by superoxide or by other species

derived from superoxide, for example, H2O2. After

all, exogenous H2O2 has been shown to increase BBB

permeability both time- and dose-dependently [90].

Therefore, it is possible that superoxide is first

dismutated to H2O2 which then directly exerts

damaging effects on the BBB. This appears to

contradict an earlier finding that pre-treatment of a

cat model of ischemic-reperfusion injury with catalase

alone failed to attenuate BBB dysfunction, whereas

SOD was an effective prophylaxis [129]. Given how

catalase removes H2O2 and how exogenous H2O2 has

clearly been demonstrated to cause BBB leakiness, it

is unclear why catalase should have been ineffective.

We speculate that the apparent disparity may be a

result of low in vivo H2O2 concentrations in the cat

model of injury. Since the effect of H2O2 on BBB

opening is dose-dependent, assuming that in vivo

H2O2 concentrations are very low, it then follows that

catalase would not significantly improve BBB dys-

function. It therefore appears that, relative to super-

oxide, H2O2 may not be an important mediator, if at

all, of BBB breakdown in vivo. However, because no

measurement of in vivo H2O2 concentrations in

relation to BBB permeability has been made to our

best knowledge, it would be inappropriate to make a

definitive conclusion on this matter at this point in

time.

Besides H2O2, another ROS derived from super-

oxide is ONOO�. ONOO� is formed from super-

oxide and NO. ONOO� is a potent oxidant and has

been shown to mediate BBB dysfunction [130].

Given the neurotoxicity of ONOO�, it would be

expected that NO, from which ONOO� is formed,

should similarly be neurotoxic. Indeed, it has been

shown that NO increases BBB permeability both in

vitro [131] and in vivo [132]. However, one study

found that NO prevents malondialdehyde formation

and attenuates BBB breakdown induced by hypoxia-

reperfusion injury in rat BMVECs [133]. Thus, the

role of NO in BBB function is disputable. The

apparent disparity in these studies may be related to

the levels of NO involved. It may be that NO at low

concentrations scavenges superoxide, preventing the

harmful effects of superoxide on the BBB. Although

ONOO� will be produced in the process, levels of

ONOO� will be very low due to low NO concentra-

tions and thus be insufficient to cause significant

neurological damage. In contrast, at high NO con-

centrations, large amounts of ONOO� are produced

and this results in BBB dysfunction. However it has

to be emphasized that this is by no means a proven

truth as no experiments to our best knowledge have

been conducted to verify this.
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Just as the effects of NO remain in dispute, it is also

unclear which NOS isoform is primarily involved in

BBB breakdown. While iNOS is generally believed to

account for the high level of NO generated during

inflammation [134] and inflammation in turn is

associated with ROS production and BBB dysfunc-

tion, more recent reports appear to suggest that iNOS

is not involved in NO-mediated BBB breakdown. For

instance, while the endothelial NOS (eNOS)-specific

inhibitor L-NIO decreased glutamate-induced NO

production in murine brain endothelial cells, the

iNOS-specific inhibitor 1400W had no effect [135].

A separate study found no correlation between the

expression of iNOS and changes in BBB integrity

induced by IFNg [136]. Besides, it has been shown

that the Ca2�-chelator BAPTA prevents ROS gen-

eration and BBB breakdown [137], indicating that

ROS-induced BBB dysfunction is Ca2�-dependent.

However, iNOS activity is independent of Ca2�

[138], suggesting that iNOS may not be involved in

ROS-mediated BBB breakdown. In addition, as

discussed earlier, loss of BBB integrity as mediated

by ROS is generally reversible. However, iNOS-

mediated NO production is long-lasting, a stark

contrast to the short-lived increase in NO generated

by eNOS. These observations collectively suggest

that eNOS, rather than iNOS, is the principal

mediator of NO production involved in BBB break-

down. However, in a mouse model of meningitis,

iNOS, together with eNOS, was found to be ex-

pressed at higher levels than in healthy controls [139].

Rat models of closed head injury also displayed

increased expression of iNOS, although eNOS was

also observed to be up-regulated [140]. Furthermore,

inhibition of iNOS by its specific inhibitor amino-

guanidine prevented BBB dysfunction in rats [141].

Thus, it remains to be seen if iNOS is indeed

dispensable to ROS-mediated BBB disruption. It

may be that different NOS isoforms are involved in

different cells or neuropathology. More work has to

be done before a clearer picture emerges.

Therefore, while superoxide, H2O2, ONOO� and

NO have all been implicated in BBB dysfunction, it is

uncertain what their precise roles and importance

are. This is not surprising as free radicals at low levels

can be useful species with physiological roles, yet, at

higher concentrations, be highly damaging oxidants.

More studies to determine how different doses of

these ROS affect BBB function and integrity are

necessary before definite conclusions can be drawn.

What is the relevance of ROS in

neuropathology?

ROS are produced in the early stages soon after

neurological damage [100]. As discussed above, these

ROS can then go on to activate enzymes and cause

oxidative damage, resulting in BBB dysfunction. ROS

have been implicated in several neurological condi-

tions such as Alzheimer’s disease (AD) [142], stroke

[143] and MS [144]. As it is impossible to discuss all

neuropathology, only a few better studied examples

will be briefly described below.

AD is a neurodegenerative condition typically

characterized by beta-amyloid (Ab) deposits and

neurofibrillary tangles [142], with increased BBB

permeability relative to age-matched controls having

been documented in human AD patients [145,146].

It appears that BBB breakdown is an early event in

AD [147] and the severity of BBB opening could

influence disease progression in AD patients [148].

BBB opening in AD has been attributed to small

soluble aggregates of Ab [149], which are also known

to increase ROS production in neuronal and micro-

glial cell cultures [150,151]. Observations that pro-

tein and DNA oxidative damage are increased in AD

brains [152,153] further support the idea of increased

oxidative stress in AD. It appears that there are

several ways by which Ab elevates ROS production:

(a) Ab complexes to copper ion (Cu2�) which can

be reduced in a reaction that is coupled to the

oxidation of molecular oxygen to H2O2, thus

raising H2O2 levels. The Ab radical generated in

the process can also cause oxidative damage by

reacting with cellular macromolecules, thereby

producing protein carbonyls and lipid peroxida-

tion products [154].

(b) Intra-mitochondrial Ab can bind to the mito-

chondrial enzyme, amyloid beta-binding alcohol

dehydrogenase (ABAD), forming a complex

which inhibits complexes III and IV of the

mitochondrial electron transport chain [155],

consequently increasing ROS formation [156].

(c) Ab activates signalling flux through NMDA

receptors, thereby causing an increase in intra-

cellular Ca2� [157]. This Ca2� flux activates

PLA2 and NADPH oxidase (Figure 1), resulting

in elevated ROS generation [151,158].

The precise link between Ab-induced oxidative

stress and BBB opening is unclear. However, de-

crease in occludin expression, re-distribution of

claudin-5 and ZO-2 from the membrane to the

cytoplasm [159] and increased MMP expression

[160,161] have all been documented in both human

and animal models of AD. As described earlier in this

review, these changes are all known to be caused by

elevated ROS levels. Therefore, although no study to

our best knowledge has shown a direct cause�effect

relationship between Ab-induced oxidative stress and

alterations in the BBB in AD patients, it is likely that

such changes are ROS-induced, eventually leading to

BBB breakdown.
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ROS have likewise been implicated in stroke.

Stroke arises due to blockage of the cerebral blood

vessels and is a major cause of death among the

elderly [162]. Stroke can be generally classified as

either ischemic (arising from occlusion of blood

vessels) or haemorrhagic (arising from the bursting

of blood vessels). A common secondary event in both

types of stroke is brain oedema resulting from

increased BBB permeability [143,163,164]. This

elevated BBB permeability appears to stem from

increased ROS levels. After all, it has been shown

that superoxide production increases during subar-

achnoid haemorrhage [165]. Besides, levels of the

antioxidants, Vitamin E and carotenoids were lower

[166], while those of lipid oxidative damage products

[167,168] were higher in ischemic stroke patients

relative to controls, providing further evidence of

oxidative stress in stroke.

It is plausible that increased ROS levels in stroke

lead to the induction of MMP expression and activity.

MMP-9 and MMP-2, in particular, were observed to

be induced in ischemic rat brains [103]. As men-

tioned before, MMP activity is redox-regulated and

has a major influence on BBB permeability. Besides,

anti-MMP-9 neutralizing antibodies, like ROS sca-

vengers, can decrease infarct size and reduce brain

injury in animal models of stroke, implying a critical

role for at least MMP-9 [169,170]. It is therefore

likely that MMPs are key mediators of ROS-induced

BBB breakdown in stroke.

Similar observations have been made in MS in

which it has been proposed that ROS enhance the

adhesion of monocytes to BMVECs, induce cytoske-

letal rearrangement and alter TJ proteins, all of which

lead to increased BBB permeability [144,171,172].

Severe oxidative damage to the major biomolecules,

lipids, proteins and nucleotides in MS lesions has also

been observed [173]. All these changes and damage

are likely to both be a consequence of elevated ROS

levels and to themselves contribute to BBB opening

(see Figure 1). One group has also reported that

Cu2� chelation reduces MMP-9 activity by decreas-

ing ROS production in MS lesions, thereby alleviat-

ing the clinical symptoms of experimental

autoimmune encephalomyelitis (a mouse model of

MS) [174]. Collectively, these studies suggest that

ROS production is increased in MS, causing various

changes such as MMP activation which eventually

lead to BBB dysfunction.

Is antioxidant therapy effective in the treatment

of neuropathologies?

Given the apparent involvement of ROS in neuro-

pathology, a reasonable hypothesis would be that

antioxidants, which reduce oxidative stress, can im-

prove the prognosis of affected patients. However, the

validity of this hypothesis is questionable. Taking

stroke as an example, several trials have been

conducted, both in humans and animals, in which

various antioxidants were administered and outcome

measures like mortality, infarct size and brain water

were analysed. Studies in animal models have gen-

erally been encouraging. For instance, melatonin and

edaravone, both free radical scavengers, reduced

brain water content in rat models of subarachnoid

haemorrhage [175,176]. Another study done in a rat

model of ischemic stroke found that red wine poly-

phenolic compounds decreased brain infarct size

[177]. All these studies appear to suggest that

antioxidants improve prognosis in stroke. However,

results from clinical trials have been less promising.

For example, using disability and neurological deficits

as outcome measures, NXY-059 (a potent free radical

trapping agent) did not significantly alter prognosis in

acute ischemic stroke [178]. Another antioxidant,

tirilazad mesylate (a ROS scavenger and inhibitor of

lipid peroxidation), actually increased the odds of

being dead or disabled after an acute ischemic stroke,

despite being an effective neuroprotectant in animal

models [179]. Therefore, the effectiveness of antiox-

idant therapy in stroke cases remains uncertain.

Apart from stroke, the feasibility of antioxidant

therapy has also been evaluated in animal models of

TBI. The results appear promising with the Vitamin E

analogue, MDL74, proving effective in attenuating

TBI-induced cerebral oedema in rats with fluid

percussion head injury [180]. A second study also

found that treatment of TBI rats with propofol and

erythropoietin (EPO), both known inhibitors of lipid

peroxidation, reduced serum malondialdehyde levels,

relative to untreated TBI rats [181]. In another study,

rats on a diet supplemented with curcumin were found

to suffer less TBI-associated cognitive impairment

than rats on a regular diet [182]. Since curcumin is

thought to be a better antioxidant-neuroprotectant

than Vitamin E [183] and curcumin-supplemented

rats suffered less oxidative damage than control rats

[182], it appears that antioxidant therapy was effective

as a prophylaxis in reducing TBI-induced neurologi-

cal damage. However, as seen with the example of

stroke, the ultimate test lies in clinical trials and the

efficacy of antioxidant therapy in human TBI remains

to be verified.

The inability to translate success in animal models

to clinical cases could be due to several reasons, one

of which is the ability to deliver the antioxidant to the

site of injury within the brain and to do so at

sufficiently high concentrations. One hypothesis put

forth suggests that, in humans, damage to vessels

supplying blood to the brain prevents delivery of

the drug to the relevant tissues, thus leading to the

failure of many clinical trials [184]. This could, for

example, happen in ischemic stroke in which blood

vessels are occluded. Failure to deliver high levels of
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an antioxidant-drug to the brain is all the more

critical as antioxidants evaluated clinically tend to

be ROS scavengers and the high reactivity of ROS

makes it necessary for the scavenger to be present at

extremely high concentrations to effectively ‘com-

pete’ with cellular molecules for reaction with ROS

[185].

The time of administration of the antioxidant

therapy following injury is also crucial to the success

of a therapy. It has been suggested that the ther-

apeutic window of antioxidants is narrow and that

antioxidants may be effective only if administered

within 1�2 h of injury [185]. Closer examination of

the studies quoted above support this suggestion as

studies in which benefits of antioxidant therapy were

observed involved antioxidant administration within

2 h of injury [175�177]. In contrast, those studies

which found no or even detrimental effects had

longer time periods between injury and treatment of

up to 24 h [178,179]. The narrow therapeutic

window may be a reflection of the varying importance

of ROS in different stages of injury, being particularly

crucial only in the acute phase [184]. It may be that,

beyond 2 h, events downstream of ROS have already

set in and, thus, antioxidants can no longer influence

outcome, resulting in the inefficacy of antioxidant

therapy. The therapeutic window therefore is an

extremely important factor in determining the effec-

tiveness of a therapy [186] and the extended time

periods inherent in the human trials may be a reason

for the lack of effectiveness.

Besides, ROS can potentially be useful signalling

molecules in injury repair and damage control. If

antioxidant concentrations are too high, they may

remove more ROS than is beneficial, thus impeding

the initiation of repair processes, further exacerbating

injury. For instance, although ROS-induced MMP-9

activity is associated with BBB breakdown, activated

MMP-9 could possibly also function as a neuropro-

tectant by reducing the secretion of Ab [187]. This

could be important in limiting brain damage during

AD in which Ab plays a critical pathological role

[188]. Therefore, excessive antioxidants may do more

harm than good. To put it succinctly, antioxidants, as

neuroprotectants, may simply have very narrow

therapeutic ranges (in addition to short therapeutic

windows) that vary between animals and humans and

antioxidant concentrations evaluated in clinical trials

may not fall within the clinical therapeutic range,

resulting in failure of these trials.

It should also be noted that the perception of

success in any study also depends on the outcome

measures of that study. Endpoints measured in

clinical trials such as disability and mortality

[178,179] are usually influenced by multiple factors,

not all of which may be significantly affected by the

antioxidant therapy being evaluated. Therefore, even

if the antioxidant improves one of the factors involved

but leaves the others unchanged, outcome measures

like mortality may remain severe and be without

improvement, leading to a perception of failure when,

in fact, the antioxidant was effective in ameliorating

one aspect of the condition. Based on this, we suggest

that combination therapy involving antioxidants and

other neuroprotectants may lead to greater success in

clinical trials than antioxidants used in isolation. Even

focusing on antioxidants alone, it may be necessary to

use multiple rather than single antioxidants for

treatment. Taking vitamin E as an example, this

antioxidant mainly protects against lipid oxidative

damage. Singular use of vitamin E would therefore be

largely ineffective against other forms of oxidative

damage such as that to proteins and DNA which

could have as important a pathological role as lipid

peroxidation, if not more so. Therefore, because each

antioxidant affords protection to a different sub-set of

biomolecules, it may be necessary to administer

combinations of antioxidants to provide all-round

protection.

Even where antioxidant therapy has proven useful

(e.g. in animal models where antioxidants improved

stroke prognosis), it is unclear if the improvements

observed were indeed due to an antioxidant effect.

After all, antioxidants often possess non-antioxidant

properties as well. For instance, melatonin influences

apoptotic signalling and enhances the immune sys-

tem, on top of being an antioxidant [189]. It could

also modulate the cytoskeletal structure, for instance,

by inducing the re-organization of actin filaments

independent of an antioxidant effect [190]. Similarly,

polyphenols, besides being antioxidants, are also

capable of activating insulin signalling [191] and

influencing transcription [192]. Furthermore, even

in the studies where antioxidants proved to be

effective therapy, reductions in markers of oxidative

damage were not necessarily observed. For instance,

while edaravone reduced oxidative DNA damage in

the brain [176], melatonin did not reduce lipid

peroxidation [175]. Since there is no clear consensus

on the impact of antioxidant treatment on markers of

oxidative damage, it is difficult to conclude defini-

tively that any improvement observed must be due to

an antioxidant effect.

Assuming an antioxidant mechanism to be neces-

sary for clinical success, the usefulness of ROS

scavengers may be limited given the stoichiometric

nature of their ROS removal [184]. It may therefore

be more prudent to develop approaches which over-

come this limitation. For instance, Nrf-2 is a tran-

scription factor which controls the expression of

many antioxidant genes including catalase and SOD

by binding to the antioxidant response element

(ARE) upon dissociation from its inhibitor Keap1

[193]. Nrf-2 activation increases the resistance of

neuronal cells and Nrf-2 knockout mice to oxidative

stress-induced neurotoxicity [194]. The activation of
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this transcription factor by sulphoraphane also re-

duces BBB leakiness due to brain injury [195],

highlighting the potential of Nrf-2 as a therapeutic

target [196]. Other possible strategies include the use

of catalytic antioxidants [197] and metal chelators

[198]. These approaches circumvent the limitations

of conventional ROS scavengers in various ways. For

instance, targeting Nrf-2 up-regulates endogenous

antioxidant defences, generating enzymes like perox-

idases that remove ROS enzymatically. Catalytic

antioxidants function similarly, with each molecule

of catalytic antioxidant removing multiple radicals, as

opposed to traditional scavengers which remove ROS

on a 1:1 ratio. Such strategies are therefore more

efficient than the use of conventional ROS scaven-

gers. Metal chelators, on the other hand, sequester

redox-active metal ions like Cu2� and Fe3�, thereby

preventing them from participating in reactions that

generate ROS such as the Fenton reaction, thus

eliminating ROS production by such means alto-

gether.

Future directions

Although there is much evidence for the importance

of ROS in neuropathology, the availability of effective

antioxidant-neuroprotectants for human patients re-

mains limited. As discussed above, there are several

issues impeding the rapid development of an effective

antioxidant therapy. For instance, the therapeutic

window and efficacy range differs between drugs

[186]. For a drug to be effective, it has to be

administered within the right time frame at its

therapeutic concentration and for a sufficient length

of time from the point of injury. Therefore, any new

candidate drug will have to be evaluated carefully to

determine an appropriate therapeutic window and

range.

In addition, where antioxidant therapy has proven

effective, it is important to determine if the benefits

were derived from an antioxidant effect or from other

properties of the therapy. Knowledge of why a

therapy is effective will aid in better drug design.

For example, if the beneficial effects of a compound

are due to its antioxidant properties, it may be

economical to identify candidate drugs by screening

compounds based on their antioxidant properties.

Conversely, if the effective drugs improve prognosis

independent of an antioxidant effect, such a strategy

would be of no use.

The ability of candidate drugs to themselves cross

the BBB is another important criterion in the search

for effective neuroprotectants. The use of a drug for

neuroprotection may be limited if it is unable to pass

through the BBB [174], as that would preclude the

drug from accessing the site of injury within the

brain.

In summary, although there is little doubt of the

involvement of ROS in neuropathology, it may be

some time before an antioxidant therapy that is

neuroprotective in humans can be found. None-

theless, this is not to say that there are no candidate

compounds currently available. For instance, in vitro

and animal studies have been conducted with anti-

oxidants like propofol [199], N-acetylcysteine and its

derivative N-acetylcysteine amide [174,200] which

have yielded promising results. Some of these are

currently being evaluated in clinical trials, including

EPO (for neurological outcome following TBI; trial

number NCT00313716), propofol (also for head

trauma; trial number NCT00336882) and edaravone

(for stroke and head injury; ECCT-HIS) [201]. It is

hopeful that as scientific knowledge of ROS and

antioxidants in neurology improves, better and more

effective neuroprotectants can be designed and ap-

plied to humans.
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